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Introduction

This lecture presents several key issues
o How to convert physical system to MDOF
vibration model
Influence coefficient methods

o Modal matrix and vibration modes

o Energy method to form the equations of motion
Lagrange’s equation

o Approximate methods
Approximation methods and finite element method

Part 1. Influence Coefficients
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Introduction

Matrix methods for analysis provides
systematic approach to solve complicate
problem

In addition, can also use them to predict key
properties of vibration systems

o Natural frequency

o Semi-definite

Flexibility Matrix

Consider a 3 DOF mass-spring system,
under quasi-static situation, the force-
displacement relation can be expressed as

x| a, ap aj ||/
Xq ay ayp ap||f

(x} =[a]{f}

[a] = flexibility matrix

or




Stiffness Matrix
On the other hand,
1 ki kg ksl
Lt =|kn kn kys |4 X2
fi ky, ki Ky || Xs

(f} =[k]{x
[K] = stiffness matrix
[Kl=[a}; [a]=[Kk]*

or

How to Obtain Influence Coefficients

X a, a, a;|[f
X,p=|ay 6y an|ih
X3 ay ayp ay || fs

First, let f,=1, f,=f; =0 = a;; = X;; 815, = X,; 833 = X3
then, let f,=1, f;=f;=0 = a,; = X;; 8,5 = Xy; Ay3 = X3

Finally, let f;=1, f,=f, =0 = a3, = X;; @3, = X,; 833 = X3
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An Example

Determining the flexibility matrix of the following system

i
u;L ﬁi
N,

dis Jz3 a?\

RREEERY

b
Cont’d
From cantilever beam formula from mechanics of materials
A [lomxl ]2
%2 _I-:T[E(z‘r) % 3’] N
27 13 _ue
ﬂ;|=—3“‘§ “2|=012"‘3_E
g 3 25 1P
wm=3E W= wmTy
1 3 4
43 =3 EI a3 = 9 = 3 Er
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Stiftness Matrix Example

Find the stiffness matrix

K k k k
i }-wia—{ e |- ma ] W,
a—n a_'.lg a_'x 3

Solution: Let x, = 1.0 and x, = x; = 0. The forces required at 1, 2
and 3, considering forces to the right as positive, are

Si=k + ky=k,,
L= —ky =k,
f3=0=k;
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5 Repeat with x, = 1, and x;, = x; = 0. The forces are now
COﬂt d fi=—ky =k

fz-k1+k3=ku
fs"_k3=k32

For the last column of &’s, let x; = 1 and x, = x, = 0. The forces are

Si=0=1k,;
fz"_ka’:kn
f:-k3+k4‘k33

The stiffness matrix can now be written as

D _k_-’_ (kj + k“)

A Building Example

p— S— Kaz kas  kaa
e
3 = _“"_32 k3 Ir“
e
2 LR SN
e
1 — a2 kiq
£
N 77 7 77 Z‘J 7
{a) (b} (c) {d) le)
1921 El
ky=ky=ky=—"7*= 24F
(21) 24 —12 0 0
El| -12 24 —12 0
(Kl=75 o0 -12 24 -1
0 0 -12 12
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‘ Reciprocity Theorem
%('I@N?
2 E N P

®

[
1
1
|
|
1
'
|
|

For an elastic structure, the displacement at 2 due to force
applied at 1 = the displacement at 1 due to force applied at 2

This implies that stiffness or flexibility matrix are symmetric
and the required test numbers can be cut in half

‘ Characteristic Equations
MX +KX =0

M ~'M = I (a unit matrix)

Aka Dynamic Matrix
M ~'K = A (a system matrix)

IX'+AX =0

Assuming harmonic motion X = — AX, where A = w2,

[A - M][x} =0 - Stiffness formulation

1
[am —N]X =0, A= = - Flexibility formulation

16
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Orthogonality of Eigenvectors

For different eigenvalues, eigenvectors are

mutually orthogonal (perpendicular to each
other)

o Can be used as a new coordinates to describe the
behavior of vibration systems

Principal coordinates
o Can be used to solve vibration of continuous
systems
PDE - series ODEs

Example: Thompson 6.3.1

2
Determining the natural frequencies and
mode shapes of a 2-story building 2"‘ £
i/ ”}//
2m 0 1 % 3k —k]fx)_|[O©
A R I M Y e
707
letting A = w?
3k k
(Gm=d -~ |n[_]° 1 &
__:; (%-;\) x| o ;\l'i;
oSk (kYoo Ay m2X
2 m m m
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‘ Cont’d

-1.0

Part II. Modal Matrix

20
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‘Modal Matrix Definition

= 3-DoF system example P'MP =X, X,][M][X, X
. [ X{Mx,  X[MX,
P= {x;}{x;}{x;} =[X| X, Xs] X, MX, X MX,
X3yl X33l X35 M, 0
"l 0 M2]
(x, x3 x3),
P' =1 (xyx3 ), | =[ X, X3 X5 ] , K, 0
(I] Xy Xj)j P KP = 0 Kl

21

‘Example

O I e G B
}.,=w,=% ,\.2=w§=3£

L=l L= 10)

P'MPY + P'KPY =0 ll 0“;1

—> 2

[+l 51

Y

Y2

]=0

22
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Cont’d
The system is decoupled X;: physical coordinates
v+ w?yj = y;: principal coordinate

),(1) = 3,(0) cos wt + wl 5,(0) sin wt
i

»() = %\ﬁ; {[xl(O) + x,(0)] cos w,z

x)(1) = ——[7,(0) = (D] + L1,0 + £0)] sm‘,}
2m .
1
x,(1) = l [xi(0) + ()] yaf) = 5 Vam [[_-“1(0) + x,(0)] cos wyt
m
+ wlz [ —%(0) + %,(0)] sin ‘-’zf]
Modal Damping

MX +CX +KX = F
P'MPY + P'CPY + P'KPY = P'F
If Rayleigh Damping
C =aM + BK

P'CP = aP'MP + BP' KP
=al + BA
¥, + (a4 Bal)y, + wly, = f(1)

2lw, = a+ Bwf

24
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Part III. Lagrange’s Equation

25

Introduction

Perhaps Lagrange’s equation is the most
well-known method in dynamics (next to
Newton's 2" Law)

Energy approach

a Scalar relation

obtaining equations of motion by kinetic and
potential energies

26
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Step 1: Define Generalized Coordinates

)

Usually requires “independent”

Example
o Double pendulum

o Use 0,4, 0, as the generalized
coordinates

yl-llcosal y2-1|mo|+lzm02

0,, 06,: as gl, g2 (Generalized coordinates)

Step 2. Find Kinetic and Potential
Energies

vf m il 4yl = (Jla'l)’

vf = 4 + 93 =[ 16, + 18, cos(8, ~ 8,)] +[ 1,6, sin(s, ~ o))’

1 1
T= fml'-’f + 5"‘:922

V' = ~my(/, cos ) — my(!, cos 8, + I, cos 8,)

Lagrangian L = T-V

28
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| Step 3. Apply Lagrange’s Equation

d E)J’_’:ﬂ) i=1.2-- N
dir \ 9q; 9¢;
L=T=V=3%m + m)L6,)* + dmy(Lo0,)? + myL,L;0,0, cos (6, — 6,)
— (my + my)Lg(1 — cos 0;) — myLog(l — cos 6,). -
d (0L\ oL

—_——_—] - = = 2 . —
dt (é)gl) ﬁ-"ﬂl (ml + MQ)LI g: { mngLgf}Q COs (82 9,)

— myL,L,8,2 sin (6, — 0,) + (my + my)L,gsin 8, =0,

d (el AL .
dr (EZ) - ﬁ; = myL, gg + PﬂgL1L2ﬂ1 cos (8, — 6,)

+ m2L1L2912 sin (92 — 9]) -+ mngg Sill 02 = D*

29

‘ Step 4. Linearizing equations and form

the vibration model

= Small amplitude analysis
o Linearization
o Obtain linear vibration model
= Analyzing the vibration model
o Natural frequencies
o Natural mode
o Time response,....

2023/5/23
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Example: A 2-D Pendulum with Flexible
String | |

Generalized Coordinates: 0, r & ¢ \
AN

T -';— P+ (ré)z] V= —mgrcos 6 + -g— (r-a)’ ko

LT =T —-V= % [;'-2 + (ré)z] + mgrcos 6 — —;(r - a)

d [{dL oL\ _
(-3 -e

mi — mr@ — mgcos® + k(r — a) =0

= (8- (5)-a-

=

2mrr8 + mr0 — mgrsin® = 0 .

‘ Part IV. Normal Mode Summation
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Introduction

Solving MDOF vibration problem can be a
pain and time consuming

o As the # of DoF becomes larger

o Unnecessary detail

Approximation methods become popular

o Obtain effective solution with much less
computational cost

Normal mode summation method
o Aka mode decomposition, mode superposition
o Effective and has been implemented in FEM

33

Approach

A method to solve force vibration response based on normal
modes

Vibration of a 50-story building: use first 3 modes to approximate
MX +CX +KX = F
X; = ¢1(xf}4|(f) + %(x‘-)qz(!) + ‘f'z(x:)‘h(f}
Xy o(x)  ¢,(x) *(x1) 11 4,
. . ) Py

- . - . ¢;; known mode shapes

X, $i(x)  6x(x) os(x,) || g, gg;ggg}vtvsn time-varying

2023/5/23
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‘ Cont’d / 4
..: -¢ka;) —————— <d3(‘ﬁ
: fytx) (X8
“ s Z 7 7
P'MP§ + P'CP4 +P'KPg = P'F

Mode participation factor

g, + 28wg; + wlg, = T, /(1) 2 9:(x)p(x)
J

@2
Original: 50 DoFs ?’"ﬂ’- (x;)

This approach: 3 DoFs

35

Part V. Finite Element Method: An
Introduction
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Introduction

Finite element analysis is an effective and
systematic method for modeling and analyzing
various engineering problems

o Deformation, vibration, fluid flow, electromagnetics,
acoustic, etc...

o Many commercial available packages
Pre-processor

o Obtain the equations of motion by meshing...
Solver

o Solve the matrix equation

Post-processor
o Visualizing the results

Finite Element Analysis Procedure

Change of
Physical problem physical
problem

Mathematical model Improve

- : - mathematical
. governed by dlffrentlal equations oo

|

Finite element solution

Interpretation of results

Refine
analysis

Design improvements
Structural optimization

2023/5/23
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| Typical Commercial FEM Packages

for Vibrations
= ANSYS

= ABAQUS

= ADINA

= MSC/Nastran
= COMSOL

39
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Part VL. Simple Problems

41

‘ Prob. 1 Influence Coefficients ®ao6.1)

x o o
i e |t
(a)

, xn-1 5=0 % =0
ky e ks e ks e
i | [ ] i [

ki kay ks
(b)
keyey kalx, — 31) kafixy — xy

— x my - i my 0 msy

=k = —ky =
Ky ke ke

FIGURE 6.6 Determination of stiffness influence coefficients.

Find the stiffness influence coefficients of the system shown in Fig. 6.6(a). —

42
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i’rob. 2 Stiffness Matrix of a Frame ®ao. 6.4)

£ £

y } }
L k2 9 ,‘[: 0 ‘Ix:»u 5 ws
ﬁA B * Yo, X Y

~12Eluw,

E 121

§ﬁ

(a)
FIGURE 6.7  Stiffness matrix of a frame.

Determine the stiffness matrix of the frame shown in Fig. 6.7(a). Neglect the effect of axial stiffness
of the members AB and BC.

43

‘Prob. 3 Equation of Motion of a
Torsional System ®ao. 6.9)

3
Compressor () Turbine (J5) ‘ Generator (J3)

The arrangement of the compressor, turbine, and generator in a thermal power plant is shown in
Fig. 6.11. This arrangement can be considered as a torsional system where J; denote the mass
moments of inertia of the three components (compressor, turbine, and generator), M,; indicate the
external moments acting on the components, and k,; represent the torsional spring constants of the
shaft between the components, as indicated in Fig. 6.11. Derive the equations of motion of the sys-
tem using Lagrange’s equations by treating the angular displacements of the components 8; as gen-
eralized coordinates.

44
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'Prob. 4 Forced Vibration Response
of a Forging Hammer ®ao. 6.16)

Fi(N

25,000

(a)
FIGURE 6.14  Impact caused by forging

hammer.

The force acting on the workpiece of the forging hammer shown in Fig. 5.41 due to impact by the
hammer can be approximated as a rectangular pulse, as shown in Fig. 6.14(a). Find the resulting
vibration of the system for the following data: mass of the workpiece, anvil and frame
(m;) = 200 Mg, mass of the foundation block (m;) = 250 Mg, stiffness of the elastic pad

(ky) = 150 MN/m, and stiffness of the soil (k;) = 75 MN/m. Assume the initial displacements and

initial velocities of the masses as zero.

45

‘ Part VII. Demonstrations

46
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Lagrangian simulation

Advisor : K-S Chen
Speaker : C-X Dai

47

= Lagrange’s Equation

2

MI60\+MLO, cos(01—02)+ML92 sin (6,-0, )+ Mgsin 6,-F cos§, =0

%ML 62+ M1 6, cos(6,-0,)-M1 6, sin (6,-0, )+ Mgsin6,-2F cos, =0

e Linearization

|M19|+ML92+Mg9|—F=0

%ML92+M191+Mg92-2F =0

48
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ILinear

L]
01= (F-MLO:-Mg0,)

. 3 )
0 =——(2F-MI0, -Mg0.
2 4ML( 1-Mg0,)

v

h 4

Soope

Impulse force
thetat

Integrator

Integrato3
thetaz

B
§
i

To Watspace

49
Nonlinear 1
01 = MLI(F cos 6, - ML 0> cos(6,-0,)- ML O sin(6,-0, ) - Mgsin6,)
2
0= 413%(21: cos @, - M1 6, cos (6,-6, )+ Ml 0, sin (0,-0, ) - Mg sin6,)
]
[
E=Y I B
L= L1
ngrator et
@
S
50
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F=1IN . .
Linear and nonlinear comparison

0,
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g0
Error &
@ 30

53
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Spéctrum Analysis (nonlinear)
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F=10N

10rm
10 i
[ . X 0.35
X 035 X1 Y:9.656
\BEELY Y:7.312 B
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10 1
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55
m X09
Y:9.808
X: 165 i
Y:-6.567
30 1
40 . . I I . 50 . . . . . .
0 1 2 4 5 6 10 0 4 5 6 7 8 9 10

Frequency (Hz)

Frequency (Hz)
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Conclusion

When the input force is small, the result from linear model
and nonlinear model are very similar.

When the input force strengthen, the result will be different.
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